Domino logic with variable threshold voltage keeper

نویسندگان

  • Volkan Kursun
  • Eby G. Friedman
چکیده

A variable threshold voltage keeper circuit technique is proposed for simultaneous power reduction and speed enhancement of domino logic circuits. The threshold voltage of a keeper transistor is dynamically modified during circuit operation to reduce contention current without sacrificing noise immunity. The variable threshold voltage keeper circuit technique enhances circuit evaluation speed by up to 60% while reducing power dissipation by 35% as compared to a standard domino (SD) logic circuit. The keeper size can be increased with the proposed technique while preserving the same delay or power characteristics as compared to a SD circuit. The proposed domino logic circuit technique offers 14% higher noise immunity as compared to a SD circuit with the same evaluation delay characteristics. Forward body biasing the keeper transistor is also proposed for improved noise immunity as compared to a SD circuit with the same keeper size. It is shown that by applying forward and reverse body biased keeper circuit techniques, the noise immunity and evaluation speed of domino logic circuits are simultaneously enhanced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FinFET domino logic with independent gate keepers

Scaling of single-gate MOSFET faces great challenges in the nanometer regime due to the severe shortchannel effects that cause an exponential increase in the sub-threshold and gate-oxide leakage currents. Double-gate FinFET technology mitigates these limitations by the excellent control over a thin silicon body by two electrically coupled gates. In this paper a variable threshold voltage keeper...

متن کامل

Speed and Noise Immunity Enhanced Low Power Dynamic Circuits

– Four different dynamic circuit techniques are proposed in this paper for lowering the active mode power consumption, increasing the speed, enhancing the noise immunity, and reducing the subthreshold leakage energy of domino logic circuits. A variable threshold voltage keeper circuit technique is proposed for simultaneous power reduction and speed enhancement of domino logic circuits. The thre...

متن کامل

Design Consideration of Dual Threshold Logic for High Performance and Ultralow Power Carry Look-Ahead Adder

This paper presents the design of high performance and ultralow power 8-bit carry-look-ahead adder circuits using two-phase modified dual-threshold voltage (dual-VT) domino logic method with the feed through logic concept. The proposed concepts are provides lower delay and dynamic power consumption; due to these two advantages it perform better in high fan-out and high switching frequencies. Th...

متن کامل

Robustness aware high performance high fan - in domino OR logic design ∗

A novel technique using a keeper with a simultaneous low supply voltage and low body voltage is proposed to improve the overall performance of high fan-in OR gates without modifying the physical dimensions of the keeper. Simulation results of a 16-input domino OR gate using 45 nm CMOS technology show that the proposed technique could trade off between a high power/speed efficient operation and ...

متن کامل

Detecting resistive shorts for CMOS domino circuits

We investigate defects in CMOS domino gates and derive the test conditions for them. Very-Low-Voltage Testing can improve the defect coverage, which we define as the maximum detectable resistance, of intra-gate and inter-gate resistive shorts. We also propose a new keeper design for CMOS domino circuits. The new keeper design has low performance impact and is best useful for small CMOS domino g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. VLSI Syst.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2003